We have located links that may give you full text access.
ROS-mediated mitophagy and necroptosis regulate osteocytes death caused by TCP particles in MLO-Y4 cells.
Toxicology 2023 September 6
Our previous data have revealed TCP particles caused cell death of osteocytes, comprising over 95% of all bone cells, which contribute to periprosthetic osteolysis, joint loosening and implant failure, but its mechanisms are not fully understood. Here, we reported that TCP particles inhibited cell viability of osteocytes MLO-Y4, and caused cell death. TCP particles caused mitochondrial impairment and increased expressions of LC-3 II, Parkin and PINK 1, accompanied by the elevation of autophagy flux and intracellular acidic components, the accumulation of LC-3II, PINK1 and Parkin in damaged mitochondria, and p62 reduction. The increased LC-3II expression and cell death extent were significantly enhanced by the autophagy inhibitor Baf A1, compared with Baf A1 (or TCP particles) alone, indicating that TCP particles increase autophagic flux and lead to cell even death of MLO-Y4 cells, closely associated with mitophagy. Furthermore, TCP particles induced propidium iodide (PI) uptake and the phosphorylation of RIP1, RIP3 and MLKL, thereby increasing necroptosis in MLO-Y4 cells. The pro-necroptotic effect was alleviated by the RIP1 inhibitor Nec-1 or the MLKL inhibitor NSA. Additionally, TCP particles promoted the production of intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS), and increased TXNIP expression, but decreased protein levels of TRX1, Nrf2, HO-1 and NQO1, leading to oxidative stress. The ROS scavenger NAC remarkably reversed mitophagy and necroptosis caused by TCP particles, suggesting that ROS is responsible for mitophagy and necroptosis. Collectively, ROS-mediated mitophagy and necroptosis regulate osteocytes death caused by TCP particles in MLO-Y4 cells, which enhances osteoclastogenesis and periprosthetic osteolysis.
Full text links
Trending Papers
Restrictive fluid resuscitation in septic shock patients has lower mortality and organ dysfunction rates than standard therapy.Shock 2023 November 11
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app