Add like
Add dislike
Add to saved papers

Optimal computed tomography-based biomarkers for prediction of incisional hernia formation.

PURPOSE: Unstructured data are an untapped source for surgical prediction. Modern image analysis and machine learning (ML) can harness unstructured data in medical imaging. Incisional hernia (IH) is a pervasive surgical disease, well-suited for prediction using image analysis. Our objective was to identify optimal biomarkers (OBMs) from preoperative abdominopelvic computed tomography (CT) imaging which are most predictive of IH development.

METHODS: Two hundred and twelve rigorously matched colorectal surgery patients at our institution were included. Preoperative abdominopelvic CT scans were segmented to derive linear, volumetric, intensity-based, and textural features. These features were analyzed to find a small subset of OBMs, which are maximally predictive of IH. Three ML classifiers (Ensemble Boosting, Random Forest, SVM) trained on these OBMs were used for prediction of IH.

RESULTS: Altogether, 279 features were extracted from each CT scan. The most predictive OBMs found were: (1) abdominopelvic visceral adipose tissue (VAT) volume, normalized for height; (2) abdominopelvic skeletal muscle tissue volume, normalized for height; and (3) pelvic VAT volume to pelvic outer aspect of body wall skeletal musculature (OAM) volume ratio. Among ML prediction models, Ensemble Boosting produced the best performance with an AUC of 0.85, accuracy of 0.83, sensitivity of 0.86, and specificity of 0.81.

CONCLUSION: These OBMs suggest increased intra-abdominopelvic volume/pressure as the salient pathophysiologic driver and likely mechanism for IH formation. ML models using these OBMs are highly predictive for IH development. The next generation of surgical prediction will maximize the utility of unstructured data using advanced image analysis and ML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app