We have located links that may give you full text access.
Optimal computed tomography-based biomarkers for prediction of incisional hernia formation.
Hernia : the Journal of Hernias and Abdominal Wall Surgery 2023 September 8
PURPOSE: Unstructured data are an untapped source for surgical prediction. Modern image analysis and machine learning (ML) can harness unstructured data in medical imaging. Incisional hernia (IH) is a pervasive surgical disease, well-suited for prediction using image analysis. Our objective was to identify optimal biomarkers (OBMs) from preoperative abdominopelvic computed tomography (CT) imaging which are most predictive of IH development.
METHODS: Two hundred and twelve rigorously matched colorectal surgery patients at our institution were included. Preoperative abdominopelvic CT scans were segmented to derive linear, volumetric, intensity-based, and textural features. These features were analyzed to find a small subset of OBMs, which are maximally predictive of IH. Three ML classifiers (Ensemble Boosting, Random Forest, SVM) trained on these OBMs were used for prediction of IH.
RESULTS: Altogether, 279 features were extracted from each CT scan. The most predictive OBMs found were: (1) abdominopelvic visceral adipose tissue (VAT) volume, normalized for height; (2) abdominopelvic skeletal muscle tissue volume, normalized for height; and (3) pelvic VAT volume to pelvic outer aspect of body wall skeletal musculature (OAM) volume ratio. Among ML prediction models, Ensemble Boosting produced the best performance with an AUC of 0.85, accuracy of 0.83, sensitivity of 0.86, and specificity of 0.81.
CONCLUSION: These OBMs suggest increased intra-abdominopelvic volume/pressure as the salient pathophysiologic driver and likely mechanism for IH formation. ML models using these OBMs are highly predictive for IH development. The next generation of surgical prediction will maximize the utility of unstructured data using advanced image analysis and ML.
METHODS: Two hundred and twelve rigorously matched colorectal surgery patients at our institution were included. Preoperative abdominopelvic CT scans were segmented to derive linear, volumetric, intensity-based, and textural features. These features were analyzed to find a small subset of OBMs, which are maximally predictive of IH. Three ML classifiers (Ensemble Boosting, Random Forest, SVM) trained on these OBMs were used for prediction of IH.
RESULTS: Altogether, 279 features were extracted from each CT scan. The most predictive OBMs found were: (1) abdominopelvic visceral adipose tissue (VAT) volume, normalized for height; (2) abdominopelvic skeletal muscle tissue volume, normalized for height; and (3) pelvic VAT volume to pelvic outer aspect of body wall skeletal musculature (OAM) volume ratio. Among ML prediction models, Ensemble Boosting produced the best performance with an AUC of 0.85, accuracy of 0.83, sensitivity of 0.86, and specificity of 0.81.
CONCLUSION: These OBMs suggest increased intra-abdominopelvic volume/pressure as the salient pathophysiologic driver and likely mechanism for IH formation. ML models using these OBMs are highly predictive for IH development. The next generation of surgical prediction will maximize the utility of unstructured data using advanced image analysis and ML.
Full text links
Trending Papers
Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review.Avicenna Journal of Medicine 2023 July
ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists.Anesthesiology 2023 November 21
Common postbariatric surgery emergencies for the acute care surgeon: What you need to know.Journal of Trauma and Acute Care Surgery 2023 December 2
Sodium bicarbonate Ringer's solution for hemorrhagic shock: A meta-analysis comparing crystalloid solutions.American Journal of Emergency Medicine 2023 November 6
Association between postinduction hypotension and postoperative mortality: a single-centre retrospective cohort study.Canadian Journal of Anaesthesia 2023 November 22
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app