JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Domain and Histopathology Adaptations-Based Classification for Malignancy Grading System.

Accurate proliferation rate quantification can be used to devise an appropriate treatment for breast cancer. Pathologists use breast tissue biopsy glass slides stained with hematoxylin and eosin to obtain grading information. However, this manual evaluation may lead to high costs and be ineffective because diagnosis depends on the facility and the pathologists' insights and experiences. Convolutional neural network acts as a computer-based observer to improve clinicians' capacity in grading breast cancer. Therefore, this study proposes a novel scheme for automatic breast cancer malignancy grading from invasive ductal carcinoma. The proposed classifiers implement multistage transfer learning incorporating domain and histopathologic transformations. Domain adaptation using pretrained models, such as InceptionResNetV2, InceptionV3, NASNet-Large, ResNet50, ResNet101, VGG19, and Xception, was applied to classify the ×40 magnification BreaKHis data set into eight classes. Subsequently, InceptionV3 and Xception, which contain the domain and histopathology pretrained weights, were determined to be the best for this study and used to categorize the Databiox database into grades 1, 2, or 3. To provide a comprehensive report, this study offered a patchless automated grading system for magnification-dependent and magnification-independent classifications. With an overall accuracy (means ± SD) of 90.17% ± 3.08% to 97.67% ± 1.09% and an F1 score of 0.9013 to 0.9760 for magnification-dependent classification, the classifiers in this work achieved outstanding performance. The proposed approach could be used for breast cancer grading systems in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.
Urinary Tract Infections: Core Curriculum 2024.American Journal of Kidney Diseases 2023 October 31

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app