Add like
Add dislike
Add to saved papers

Is the mechanical function of meniscal tissue altered in osteoarthritic knees?

Knee 2023 September 5
BACKGROUND: Deteriorating meniscal function is thought to play a role in knee osteoarthritis. Meniscal proteoglycans maintain mechanical stiffness of the tissue through electrostatic effects. This study aimed to investigate whether the mechanical properties of macroscopically intact meniscus are preserved in osteoarthritis.

METHODS: Discs of lateral meniscal tissue two millimetres thick and of five millimetres diameter from osteoarthritic knees and from healthy donors were placed within a confined compression chamber, mounted in a materials testing machine and bathed in isotonic 0.14M PBS, hypotonic deionised water or hypertonic 3M PBS. Following equilibrium, a 10% ramp compressive strain was applied followed by a 7200 second hold. Resultant stress relaxation curves were fitted to a nonlinear poroviscoelastic model with strain dependent permeability using finite element modelling to determine mechanical parameters. All samples were assayed for proteoglycan content. Comparison of results was undertaken using multivariate ANOVA.

RESULTS: Thirty samples from osteoarthritic knees and 18 samples from healthy donors were tested. No significant differences in mechanical parameters or proteoglycan content was observed between groups. In both groups Young's modulus (E) was significantly greater, and zero-strain permeability significantly reduced, in samples tested in deionised water compared to samples tested in 0.14M or 3M PBS (all p < 0.05).

CONCLUSION: Mechanical parameters of intact lateral meniscus in osteoarthritic knees are similar to those found in healthy knees. Proteoglycan concentration and their electrostatic contribution to mechanical stiffness of the meniscus is maintained in menisci derived from osteoarthritic knees. Whilst macroscopic tears in the meniscal ultrastructure may contribute to osteoarthritis, intact meniscal tissue maintains its function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app