Add like
Add dislike
Add to saved papers

Machine Learning-Based Prediction of Abdominal Subcutaneous Fat Thickness During Pregnancy.

Objective: Current evidence regarding the safety of abdominal subcutaneous injections in pregnant women is limited. In this study, we developed a predictive model for abdominal skin-subcutaneous fat thickness (S-ScFT) by gestational periods (GP) in pregnant women. Methods: A total of 354 cases were measured for S-ScFT. Three machine learning algorithms, namely deep learning, random forest, and support vector machine, were used for S-ScFT predictive modeling and factor analysis for each abdominal site. Data analysis was performed using SPSS and RapidMiner softwares. Results: The deep learning algorithm best predicted the abdominal S-ScFT. The common important variables in all three algorithms for the prediction of abdominal S-ScFT were menarcheal age, prepregnancy weight, prepregnancy body mass index (categorized), large fetus for gestational age, and alcohol consumption. Conclusion: Predicting the safety of subcutaneous injections during pregnancy could be beneficial for managing gestational diabetes mellitus in pregnant women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.
Urinary Tract Infections: Core Curriculum 2024.American Journal of Kidney Diseases 2023 October 31

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app