Add like
Add dislike
Add to saved papers

Impact of long-term ultrasound treatment on structural and physicochemical properties of starches differing in granule size.

Carbohydrate Polymers 2023 November 15
Granule size is a critical parameter affecting starch processing properties. Ultrasound treatments of up to 22 h were applied on two starches differing in granule size (quinoa starch and maize starch). The two starches showed significantly different trends in both structural and physicochemical aspects affected by the ultrasound treatments. For the small granule starch (volume-weighted mean particle size of 1.79 μm), short-term ultrasonication caused an increase of swelling power. As the treatment time increased, the physicochemical properties were influenced by the degradation of amylopectin external chains. The X-ray diffraction results showed a decrease of relative crystallinity and changes of peak areas with long-term treatment. On the other hand, a balance between amylose leaching and surface damages was seen for the large granule starch (volume-weighted mean particle size of 18.3 μm). The effect of ultrasound modification on starches with different molecular and granular structures was discussed. A possible mechanism of the ultrasound effect was proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app