Add like
Add dislike
Add to saved papers

Starch/polyvinyl alcohol with ionic liquid/graphene oxide enabled highly tough, conductive and freezing-resistance hydrogels for multimodal wearable sensors.

Carbohydrate Polymers 2023 November 15
With ever-growing demand for eco-friendly materials for wearable electronics, biopolymer-based hydrogels have drawn significant attention. As one of the most abundant and biodegradable biopolymers, starch-based hydrogels have a great potential for wearable electronics. However, mechanical fragility, low conductivity and subzero freeze restrict their applications. Here, a multifunctional hydrogel was facilely fabricated by integrating ionic liquid and graphene oxide into potato starch/polyvinyl alcohol skeleton via a green physical-crosslinking method. The abundant hydrogen-bond and electrostatic interactions endowed the hydrogel with excellent stretchability (657.5 %), strength (0.64 MPa), high conductivity (1.98 S·m-1 ) and good anti-freezing property (< -20 °C). Multiple characterizations and theoretical simulation (DFT) were combined to understand and confirm the interactions among different components. Taking advantage of these properties, multimodal wearable sensors were constructed for sensing tension (gauge factor: 6.04), compression (gauge factor: 3.27) and temperature (sensitivity: 0.71 %/°C), which are applied for monitoring human motion, daily-life pressure and body temperature. The sensor had a good anti-fatigue property with stable signals during 2000 cycles. Moreover, the sensor can effectively recognize handwriting and perform human-computer interaction. This work provides a promising route to develop sustainable and multifunctional biopolymer hydrogels for wearable sensors with versatile applications in human health, exercise monitors and soft robots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app