We have located links that may give you full text access.
Investigating the role of lipid genes in liver disease using fatty liver models of alcohol and high fat in zebrafish (Danio rerio).
Liver International : Official Journal of the International Association for the Study of the Liver 2023 August 31
BACKGROUND: Accumulation of lipid in the liver is the first hallmark of both alcohol-related liver disease (ALD) and non-alcohol-related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol-related and non-alcohol-related fatty liver.
METHODS: We used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post-fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high-fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye-specific live imaging) were analysed across treatment groups to test the functions of these genes.
RESULTS: Exposure of 5-day post-fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR-Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2-fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism-related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β-oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.
CONCLUSIONS: We identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.
METHODS: We used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post-fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high-fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye-specific live imaging) were analysed across treatment groups to test the functions of these genes.
RESULTS: Exposure of 5-day post-fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR-Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2-fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism-related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β-oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.
CONCLUSIONS: We identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.
Full text links
Related Resources
Trending Papers
Updated evidence on cardiovascular and renal effects of GLP-1 receptor agonists and combination therapy with SGLT2 inhibitors and finerenone: a narrative review and perspectives.Cardiovascular Diabetology 2024 November 15
Pharmacologic Treatment of Pulmonary Hypertension Due to Heart Failure with Preserved Ejection Fraction: Are There More Arrows on Our Bow?Journal of Clinical Medicine 2024 November 14
Guidelines for the Prevention, Diagnosis, and Management of Urinary Tract Infections in Pediatrics and Adults: A WikiGuidelines Group Consensus Statement.JAMA Network Open 2024 November 4
Autoantibodies in neuromuscular disorders: a review of their utility in clinical practice.Frontiers in Neurology 2024
Methods for determining optimal positive end-expiratory pressure in patients undergoing invasive mechanical ventilation: a scoping review.Canadian Journal of Anaesthesia 2024 November 20
Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment.Curēus 2024 October
The Management of Interstitial Lung Disease in the ICU: A Comprehensive Review.Journal of Clinical Medicine 2024 November 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app