We have located links that may give you full text access.
Penfluroidol Attenuates the Imbalance of the Inflammatory Response by Repressing the Activation of the NLRP3 Inflammasome and Reduces Oxidative Stress via the Nrf2/HO-1 Signaling Pathway in LPS-Induced Macrophages.
OBJECTIVES: Excessive inflammatory responses and reactive oxygen species (ROS) formation play pivotal roles in the pathogenesis of sepsis. Penfluroidol (PF), an oral long-acting antipsychotic drug, has been suggested to possess diverse biological properties, including antischizophrenia, antitumour effect, and anti-inflammatory activity. The purpose of this research was to explore the anti-inflammatory and antioxidative effects of penfluroidol on lipopolysaccharide (LPS)-related macrophages.
METHODS: The viability of RAW264.7 and THP-1 cells was measured by Enhanced Cell Counting Kit-8 (CCK-8). The production of nitric oxide was evaluated by the Nitric Oxide Assay Kit. The generation of pro-inflammatory monocytes was detected by qRT-PCR (quantitative real-time PCR) and ELISA (enzyme-linked immunosorbent assay). Oxidative stress was assessed by measuring ROS, malondialdehyde (MDA), and superoxide dismutase (SOD) activity. The protein expression of the Nrf2/HO-1/NLRP3 inflammasome was detected by western blotting.
RESULTS: Our results indicated that no cytotoxic effect was observed when RAW264.7 and THP-1 cells were exposed to PF (0-1 μ m) and/or LPS (1 μ g/ml) for 24 hr. The data showed that LPS, which was repressed by PF, facilitated the generation of the pro-inflammatory molecules TNF- α and IL-6. In addition, LPS contributed to increased production of intracellular ROS compared with the control group, whereas the administration of PF effectively reduced LPS-related levels of ROS. Moreover, LPS induced the generation of MDA and suppressed the activities of SOD. However, PF treatment strongly decreased LPS-induced MDA levels and increased SOD activities in the RAW264.7 and THP-1 cells. Furthermore, our research confirmed that penfluroidol repressed the secretion of pro-inflammatory molecules by limiting the activation of the NLRP3 inflammasome and reducing oxidative effects via the Nrf2/HO-1 signaling pathway.
CONCLUSION: Penfluroidol attenuated the imbalance of the inflammatory response by suppressing the activation of the NLRP3 inflammasome and reduced oxidative stress via the Nrf2/HO-1 signaling pathway in LPS-induced macrophages.
METHODS: The viability of RAW264.7 and THP-1 cells was measured by Enhanced Cell Counting Kit-8 (CCK-8). The production of nitric oxide was evaluated by the Nitric Oxide Assay Kit. The generation of pro-inflammatory monocytes was detected by qRT-PCR (quantitative real-time PCR) and ELISA (enzyme-linked immunosorbent assay). Oxidative stress was assessed by measuring ROS, malondialdehyde (MDA), and superoxide dismutase (SOD) activity. The protein expression of the Nrf2/HO-1/NLRP3 inflammasome was detected by western blotting.
RESULTS: Our results indicated that no cytotoxic effect was observed when RAW264.7 and THP-1 cells were exposed to PF (0-1 μ m) and/or LPS (1 μ g/ml) for 24 hr. The data showed that LPS, which was repressed by PF, facilitated the generation of the pro-inflammatory molecules TNF- α and IL-6. In addition, LPS contributed to increased production of intracellular ROS compared with the control group, whereas the administration of PF effectively reduced LPS-related levels of ROS. Moreover, LPS induced the generation of MDA and suppressed the activities of SOD. However, PF treatment strongly decreased LPS-induced MDA levels and increased SOD activities in the RAW264.7 and THP-1 cells. Furthermore, our research confirmed that penfluroidol repressed the secretion of pro-inflammatory molecules by limiting the activation of the NLRP3 inflammasome and reducing oxidative effects via the Nrf2/HO-1 signaling pathway.
CONCLUSION: Penfluroidol attenuated the imbalance of the inflammatory response by suppressing the activation of the NLRP3 inflammasome and reduced oxidative stress via the Nrf2/HO-1 signaling pathway in LPS-induced macrophages.
Full text links
Trending Papers
2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2023 November 31
ANCA-associated vasculitis - Treatment Standard.Nephrology, Dialysis, Transplantation 2023 November 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app