Add like
Add dislike
Add to saved papers

Current State and Future Perspective of Diabetic Wound Healing Treatment: Present Evidence from Clinical Trials.

Diabetes is a chronic metabolic condition that is becoming more common and is characterised by sustained hyperglycaemia and long-term health effects. Diabetes-related wounds often heal slowly and are more susceptible to infection because of hyperglycaemia in the wound beds. The diabetic lesion becomes harder to heal after planktonic bacterial cells form biofilms. A potential approach is the creation of hydrogels with many functions. High priority is given to a variety of processes, such as antimicrobial, pro-angiogenesis, and general pro-healing. Diabetes problems include diabetic amputations or chronic wounds (DM). Chronic diabetes wounds that do not heal are often caused by low oxygen levels, increased reactive oxygen species, and impaired vascularization. Several types of hydrogels have been developed to get rid of contamination by pathogens; these hydrogels help to clean up the infection, reduce wound inflammation, and avoid necrosis. This review paper will focus on the most recent improvements and breakthroughs in antibacterial hydrogels for treating chronic wounds in people with diabetes. Prominent and significant side effects of diabetes mellitus include foot ulcers. Antioxidants, along with oxidative stress, are essential to promote the healing of diabetic wounds. Some of the problems that can come from a foot ulcer are neuropathic diabetes, ischemia, infection, inadequate glucose control, poor nutrition, also very high morbidity. Given the worrying rise in diabetes and, by extension, diabetic wounds, future treatments must focus on the rapid healing of diabetic wounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app