We have located links that may give you full text access.
Identifying molecular phenotypes in sepsis: an analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials.
Lancet Respiratory Medicine 2023 August 24
BACKGROUND: In sepsis and acute respiratory distress syndrome (ARDS), heterogeneity has contributed to difficulty identifying effective pharmacotherapies. In ARDS, two molecular phenotypes (hypoinflammatory and hyperinflammatory) have consistently been identified, with divergent outcomes and treatment responses. In this study, we sought to derive molecular phenotypes in critically ill adults with sepsis, determine their overlap with previous ARDS phenotypes, and evaluate whether they respond differently to treatment in completed sepsis trials.
METHODS: We used clinical data and plasma biomarkers from two prospective sepsis cohorts, the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study (N=1140) and the Early Assessment of Renal and Lung Injury (EARLI) study (N=818), in latent class analysis (LCA) to identify the optimal number of classes in each cohort independently. We used validated models trained to classify ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied these models retrospectively to the previously published Prospective Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock (PROWESS-SHOCK) trial and Vasopressin and Septic Shock Trial (VASST) to assign phenotypes and evaluate heterogeneity of treatment effect.
FINDINGS: A two-class model best fit both VALID and EARLI (p<0·0001). In VALID, 804 (70·5%) of the 1140 patients were classified as hypoinflammatory and 336 (29·5%) as hyperinflammatory; in EARLI, 530 (64·8%) of 818 were hypoinflammatory and 288 (35·2%) hyperinflammatory. We observed higher plasma pro-inflammatory cytokines, more vasopressor use, more bacteraemia, lower protein C, and higher mortality in the hyperinflammatory than in the hypoinflammatory phenotype (p<0·0001 for all). Classifier models indicated strong concordance between sepsis phenotypes and previously identified ARDS phenotypes (area under the curve 0·87-0·96, depending on the model). Findings were similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142 (68·0%) of 1680 patients had the hypoinflammatory phenotype and 538 (32·0%) had the hyperinflammatory phenotype, and response to activated protein C differed by phenotype (p=0·0043). In VASST, phenotype proportions were similar to other cohorts; however, no treatment interaction with the type of vasopressor was observed (p=0·72).
INTERPRETATION: Molecular phenotypes previously identified in ARDS are also identifiable in multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes could represent a treatable trait in critical illness beyond the patient's syndromic diagnosis.
FUNDING: US National Institutes of Health.
METHODS: We used clinical data and plasma biomarkers from two prospective sepsis cohorts, the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study (N=1140) and the Early Assessment of Renal and Lung Injury (EARLI) study (N=818), in latent class analysis (LCA) to identify the optimal number of classes in each cohort independently. We used validated models trained to classify ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied these models retrospectively to the previously published Prospective Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock (PROWESS-SHOCK) trial and Vasopressin and Septic Shock Trial (VASST) to assign phenotypes and evaluate heterogeneity of treatment effect.
FINDINGS: A two-class model best fit both VALID and EARLI (p<0·0001). In VALID, 804 (70·5%) of the 1140 patients were classified as hypoinflammatory and 336 (29·5%) as hyperinflammatory; in EARLI, 530 (64·8%) of 818 were hypoinflammatory and 288 (35·2%) hyperinflammatory. We observed higher plasma pro-inflammatory cytokines, more vasopressor use, more bacteraemia, lower protein C, and higher mortality in the hyperinflammatory than in the hypoinflammatory phenotype (p<0·0001 for all). Classifier models indicated strong concordance between sepsis phenotypes and previously identified ARDS phenotypes (area under the curve 0·87-0·96, depending on the model). Findings were similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142 (68·0%) of 1680 patients had the hypoinflammatory phenotype and 538 (32·0%) had the hyperinflammatory phenotype, and response to activated protein C differed by phenotype (p=0·0043). In VASST, phenotype proportions were similar to other cohorts; however, no treatment interaction with the type of vasopressor was observed (p=0·72).
INTERPRETATION: Molecular phenotypes previously identified in ARDS are also identifiable in multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes could represent a treatable trait in critical illness beyond the patient's syndromic diagnosis.
FUNDING: US National Institutes of Health.
Full text links
Trending Papers
Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review.Avicenna Journal of Medicine 2023 July
Euglycemic Ketoacidosis in Two Patients Without Diabetes After Introduction of Sodium-Glucose Cotransporter 2 Inhibitor for Heart Failure With Reduced Ejection Fraction.Diabetes Care 2023 November 22
ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists.Anesthesiology 2023 November 21
Tranexamic Acid for Traumatic Injury in the Emergency Setting: A Systematic Review and Bias-Adjusted Meta-Analysis of Randomized Controlled Trials.Annals of Emergency Medicine 2023 November 22
Association between postinduction hypotension and postoperative mortality: a single-centre retrospective cohort study.Canadian Journal of Anaesthesia 2023 November 22
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app