Add like
Add dislike
Add to saved papers

Quantitative validation of two model-based methods for the correction of probe pressure deformation in ultrasound.

PURPOSE: The acquisition of good quality ultrasound (US) images requires good acoustic coupling between the ultrasound probe and the patient's skin. In practice, this good coupling is achieved by the operator applying a force to the skin through the probe. This force induces a deformation of the tissues underlying the probe. The distorted images deteriorate the quality of the reconstructed 3D US image.

METHODS: In this work, we propose two methods to correct these deformations. These methods are based on the construction of a biomechanical model to predict the mechanical behavior of the imaged soft tissues. The originality of the methods is that they do not use external information (force or position value from sensors, or elasticity value from the literature). The model is parameterized thanks to the information contained in the image. This is allowed thanks to the optimization of two key parameters for the model which are the indentation d and the elasticity ratio α.

RESULTS: The validation is performed on real images acquired on a gelatin-based phantom using an ultrasound probe inducing an increasing vertical indentation using a step motor. The results showed a good correction of the two methods for indentations less than 4 mm. For larger indentations, one of the two methods (guided by the similarity score) provides a better quality of correction, presenting a Euclidean distance between the contours of the reference image and the corrected image of 0.71 mm.

CONCLUSION: The proposed methods ensured the correction of the deformed images induced by a linear probe pressure without using any information coming from sensors (force or position), or generic information about the mechanical parameters. The corrected images can be used to obtain a corrected 3D US image.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app