Add like
Add dislike
Add to saved papers

Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans.

PURPOSE: The proposed work aims to develop an algorithm to precisely segment the lung parenchyma in thoracic CT scans. To achieve this goal, the proposed technique utilized a combination of deep learning and traditional image processing algorithms. The initial step utilized a trained convolutional neural network (CNN) to generate preliminary lung masks, followed by the proposed post-processing algorithm for lung boundary correction.

METHODS: First, the proposed method trained an improved 2D U-Net CNN model with Inception-ResNet-v2 as its backbone. The model was trained on 32 CT scans from two different sources: one from the VESSEL12 grand challenge and the other from AIIMS Delhi. Further, the model's performance was evaluated on a test dataset of 16 CT scans with juxta-pleural nodules obtained from AIIMS Delhi and the LUNA16 challenge. The model's performance was assessed using evaluation metrics such as average volumetric dice coefficient (DSCavg ), average IoU score (IoUavg ), and average F1 score (F1avg ). Finally, the proposed post-processing algorithm was implemented to eliminate false positives from the model's prediction and to include juxta-pleural nodules in the final lung masks.

RESULTS: The trained model reported a DSCavg of 0.9791 ± 0.008, IoUavg of 0.9624 ± 0.007, and F1avg of 0.9792 ± 0.004 on the test dataset. Applying the post-processing algorithm to the predicted lung masks obtained a DSCavg of 0.9713 ± 0.007, IoUavg of 0.9486 ± 0.007, and F1avg of 0.9701 ± 0.008. The post-processing algorithm successfully included juxta-pleural nodules in the final lung mask.

CONCLUSIONS: Using a CNN model, the proposed method for lung parenchyma segmentation produced precise segmentation results. Furthermore, the post-processing algorithm addressed false positives and negatives in the model's predictions. Overall, the proposed approach demonstrated promising results for lung parenchyma segmentation. The method has the potential to be valuable in the advancement of computer-aided diagnosis (CAD) systems for automatic nodule detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app