Add like
Add dislike
Add to saved papers

Development, Validation, and Comparison of 2 Ultrasound Feature-Guided Machine Learning Models to Distinguish Cervical Lymphadenopathy.

Ultrasound Quarterly 2023 August 8
The objective of this study is to develop and validate the performance of 2 ultrasound (US) feature-guided machine learning models in distinguishing cervical lymphadenopathy. We enrolled 705 patients whose US characteristics of lymph nodes were collected at our hospital. B-mode US and color Doppler US features of cervical lymph nodes in both cohorts were analyzed by 2 radiologists. The decision tree and back propagation (BP) neural network were developed by combining clinical data (age, sex, and history of tumor) and US features. The performance of the 2 models was evaluated by calculating the area under the receiver operating characteristics curve (AUC), accuracy value, precision value, recall value, and balanced F score (F1 score). The AUC of the decision tree and BP model in the modeling cohort were 0.796 (0.757, 0.835) and 0.854 (0.756, 0.952), respectively. The AUC, accuracy value, precision value, recall value, and F1 score of the decision tree in the validation cohort were all higher than those of the BP model: 0.817 (0.786, 0.848) vs 0.674 (0.601, 0.747), 0.774 (0.737, 0.811) vs 0.702 (0.629, 0.775), 0.786 (0.739, 0.833) vs 0.644 (0.568, 0.720), 0.733 (0.694, 0.772) vs 0.630 (0.542, 0.718), and 0.750 (0.705, 0.795) vs 0.627 (0.541, 0.713), respectively. The US feature-guided decision tree model was more efficient in the diagnosis of cervical lymphadenopathy than the BP model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app