Add like
Add dislike
Add to saved papers

Orchestration of a blood-derived and ADARB1-centred network in Alzheimer's and Parkinson's disease.

Cellular Signalling 2023 August 5
The peripheral immune system is thought to influence the pathogenesis of the central nervous system in Alzheimer's disease (AD) and Parkinson's disease (PD). This study aimed to investigate the characteristics of peripheral leukocytes in AD and PD by comprehensively analyzing the transcriptomic and metabolic features in the blood (NCONTROL  = 15; NAD  = 11; NPD  = 13). The study found an ADARB1-centered module that was associated with diagnosis, phenethylamine, and glutamate. The module consisted of ADARB1, a vital RNA-editing enzyme, LINC02960, and 109 miRNAs. The study also predicted that the ADARB1 and involved regulators were targeted by miRNAs in the ADARB1 module. The integrated analysis of transcriptome and metabolic panel revealed a central role of ADARB1, miR-199b-5p, miR-26a, miR-450b-5p, miR-34c-5p, glutamate and phenethylamine in the regulatory relationships. The study highlights a set of synergetic non-coding RNA related to ADARB1 in the blood ecosystem of AD and PD with dynamic glutamate and phenethylamine, providing new insights into the pathogenesis of these diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app