Add like
Add dislike
Add to saved papers

Predicting Moderate Drinking Behaviors in National Health and Nutrition Examination Survey Participants using Biochemical and Demographical Factors with Machine Learning.

Alcohol 2023 August 4
Recent studies revealed that any amount of alcohol consumption is an overall health detriment to multiple populations, contrary to popular beliefs. In addition, very few alcohol use studies utilized machine learning methods to compare the biological health of moderate drinkers compared to those that abstain from alcohol consumption, opting instead to focus on binge drinking and heavy drinking. Using participant data of multiple factor types from the National Health and Nutrition Examination Survey, we created prediction models with stacked ensembles and gradient boosting models. Machine learning models were used to identify which factors most enabled the prediction of moderate drinking behaviors. Our combined factor runs produced a cross-validation area under the curve (AUC) of 0.929 and a validation area under the curve of 0.806. Runs that only included biochemical or demographical factors received cross-validation AUC values of 0.825 and 0.925, and validation AUC values of 0.757 and 0.783 respectively. The top predictive factors for our machine learning runs, including gamma glutamyl transferase, gender, iron, cigarette and marijuana usage, corroborate past studies that link those factors to alcohol consumption. Our findings identified key differences in the biological health of moderate drinkers compared to those that abstain from drinking. These results reveal a need to further explore the health effects of moderate drinking, especially for vulnerable populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app