Journal Article
Review
Add like
Add dislike
Add to saved papers

Human guanylate-binding proteins in intracellular pathogen detection, destruction, and host cell death induction.

Cell-intrinsic defense is an essential part of the immune response against intracellular pathogens regulated by cytokine-induced proteins and pathways. One of the most upregulated families of proteins in this defense system are the guanylate-binding proteins (GBPs), large GTPases of the dynamin family, induced in response to interferon gamma. Human GBPs (hGBPs) exert their antimicrobial activity through detection of pathogen-associated molecular patterns and/or damage-associated molecular patterns to execute control mechanisms directed at the pathogen itself as well as the vacuolar compartments in which it resides. Consequently, hGBPs are also inducers of canonical and noncanonical inflammasome responses leading to host cell death. The mechanisms are both cell-type and pathogen-dependent with hGBP1 acting as a pioneer sensor for intracellular invaders. This review focuses on the most recent functional roles of hGBPs in pathways of pathogen detection, destruction, and host cell death induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app