Add like
Add dislike
Add to saved papers

miR-122-5p is involved in post-transcriptional regulation of the mitochondrial thiamin pyrophosphate transporter ( SLC25A19 ) in pancreatic acinar cells.

Thiamin (vitamin B1) plays a vital role in cellular energy metabolism/ATP production. Pancreatic acinar cells (PACs) obtain thiamin from circulation and convert it to thiamin pyrophosphate (TPP) in the cytoplasm. TPP is then taken up by the mitochondria via a carrier-mediated process that involves the mitochondrial TPP transporter (MTPPT; encoded by the gene SLC25A19 ). We have previously characterized different aspects of the mitochondrial carrier-mediated TPP uptake process, but nothing is known about its possible regulation at the post-transcriptional level. We address this issue in the current investigations focusing on the role of miRNAs in this regulation. First, we subjected the human (and rat) 3'-untranslated region (3'-UTR) of the SLC25A19 to three in-silico programs, and all have identified putative binding sites for miR-122-5p. Transfecting pmirGLO-h SLC25A19 3'-UTR into rat PAC AR42J resulted in a significant reduction in luciferase activity compared to cells transfected with pmirGLO-empty vector. Mutating as well as truncating the putative miR-122-5p binding sites in the h SLC25A19 3'-UTR led to abrogation of inhibition in luciferase activity in PAC AR42J. Further experiments with PAC AR42J and human primary PACs showed that transfecting/transducing these cells with mimic of miR-122-5p to lead to a significant inhibition in the level of expression of the MTPPT mRNA and protein as well as in mitochondrial carrier-mediated TPP uptake. Conversely, transfecting PAC AR42J with an inhibitor of miR-122-5p increased MTPPT expression and function. These findings show, for the first time, that expression and function of the MTPPT in PACs are subject to post-transcriptional regulation by miR-122-5p.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app