Add like
Add dislike
Add to saved papers

Formulation and Evaluation of the Anti-inflammatory, Anti-oxidative, and Anti-remodelling Effects of the Niosomal Myrtenol on the Lungs of Asthmatic Rats.

Asthma is a common chronic allergic disease that affects a significant percentage of the world's population. Niosomes are nanoparticles consisting of non-ionic surfactants that can be used for drug delivery. This research was designed to investigate the impacts of inhalation of simple and niosomal forms of myrtenol against adverse consequences of asthma in rats. Asthma induction was performed via injection of ovalbumin, followed by its inhalation. Niosomes were created by a heating protocol, and their physicochemical features were evaluated. Forty-nine male Wistar rats were allotted into 7 groups (n=7 each): Control (CTL), vacant niosome (VN), Asthma, Asthma+VN, Asthma+SM (simple myrtenol), Asthma+NM (niosomal myrtenol), and Asthma+B (budesonide). Lung remodeling, serum immunoglobulin E (IgE), inflammatory  and cytokines, and antioxidant factors in the lung tissue and bronchoalveolar fluid (BALF), as well as), were evaluated. The results showed that myrtenol-loaded niosomes had appropriate encapsulation efficiency, kinetic release, size, and zeta potential. The thickness of the epithelial cell layer in the lungs, as well as cell infiltration, fibrosis, IgE, reactive oxygen species, interleukin (IL)-6, and tumor nuclear factor alpha (TNF-α) levels, decreased significantly. In contrast, superoxide dismutase and glutathione peroxide activity increased significantly in the serum and BALF of the treated groups. The niosomal form of myrtenol revealed a higher efficacy than simple myrtenol and was similar to budesonide in ameliorating asthma indices.  Inhalation of simple and niosomal forms of myrtenol improved the detrimental changes in the asthmatic lung. The niosomal form induced more prominent anti-asthmatic effects comparable to those of budesonide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app