Add like
Add dislike
Add to saved papers

Molecular mechanism of kidney damage caused by abamectin in carp: oxidative stress, inflammation, mitochondrial damage, and apoptosis.

Toxicology 2023 July 26
Indiscriminate use of pesticides not only leads to environmental pollution problems, but also causes poisoning of non-target organisms. Abamectin (ABM), a widely used insecticide worldwide, is of wide concern due to its persistence in the environment and its high toxicity to fish. The kidney, as a key organ for detoxification, is more susceptible to the effects of ABM. Unfortunately, few studies investigated the mechanisms behind this connection. In this study, carp was used as an indicator organism for toxicological studies to investigate renal damage caused by ABM residues in carp. In this work, carp were exposed to ABM (0, 3.005, and 12.02μg/L) for 4 d and the nephrotoxicity was assessed. Histopathological findings revealed that ABM exposure induced kidney damage in carp, as well as an increase Creatinine and BUN levels. Meanwhile, ABM as a reactive oxygen species (ROS) stimulator, boosted ROS bursts and lowered antioxidant enzyme activity while activating the body's antioxidant system, the Nrf2-Keap1 signaling pathway. The accumulation of ROS can also lead to the imbalance of the body's oxidation system, leading to oxidative stress. At the same time, NF-κB signaling pathway associated with inflammation was activated, which regulated expression levels of inflammatory cytokines (TNF-α, IL-6, IL-1β, and iNOS increased, while IL-10 and TGF-β1 decreased). In addition, ABM exposure caused structural damage to kidney mitochondria of carp, resulting in decreased mitochondrial membrane potential and ATP production capacity, and mediated apoptosis through endogenous pathways Bax/Bcl-2/Caspase-9/Caspase-3. In conclusion, ABM caused kidney damage in carp by inducing oxidative stress, inflammation, and apoptosis through mitochondrial pathway. These findings will be useful for future research into molecular mechanisms of ABM-induced nephrotoxicity in aquatic organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app