Add like
Add dislike
Add to saved papers

Hypoosmosis alters hepatocyte mitochondrial morphology and induces selective release of carbamoyl phosphate synthetase 1.

Carbamoyl phosphate synthetase 1 (CPS1) is the most abundant hepatocyte mitochondrial matrix protein. Hypoosmotic stress increases CPS1 release in isolated mouse hepatocytes without cell death. We hypothesized that increased CPS1 release during hypoosmosis is selective and associates with altered mitochondrial morphology. Both ex vivo and in vivo models were assessed. Mouse hepatocytes and livers were challenged with isotonic or hypoosmotic (35 mOsm) buffer. Mice were injected intraperitoneally with water (10% body weight) with or without an antidiuretic. Mitochondrial and cytosolic fractions were isolated using differential centrifugation, then analyzed by immunoblotting to assess subcellular redistribution of four mitochondrial proteins: CPS1, ornithine transcarbamylase (OTC), pyrroline-5-carboxylate reductase 1 (PYCR1), and cytochrome c. Mitochondrial morphology alterations were examined using electron microscopy. Hypoosmotic treatment of whole livers or hepatocytes led to preferential or increased mitochondrial release, respectively, of CPS1 as compared with two mitochondrial matrix proteins (OTC/PYCR1) and with the intermembrane space protein, cytochrome c. Mitochondrial apoptosis-induced channel opening using staurosporine in hepatocytes led to preferential CPS1 and cytochrome c release. The CPS1-selective changes were accompanied by dramatic alterations in ultrastructural mitochondrial morphology. In mice, hypoosmosis/hyponatremia led to increased liver vascular congestion, increased CPS1 in bile but not blood, coupled with mitochondrial structural alterations. In contrast, isotonic increase of intravascular volume led to a decrease in mitochondrial size with limited change in bile CPS1 compared with hypoosmotic conditions, and absence of the hypoosmosis-associated histologic alterations. Taken together, hepatocyte CPS1 is selectively released in response to hypoosmosis/hyponatremia and provides a unique biomarker of mitochondrial injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app