JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes.

Skeletal Muscle 2023 July 13
BACKGROUND: As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models.

METHODS AND RESULTS: To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse.

CONCLUSIONS: This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app