Add like
Add dislike
Add to saved papers

SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis.

BACKGROUND AND RATIONALE: Activation of hepatic stellate cells (HSCs), the central event of fibrosis, indicates the severe stage of non-alcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) participate in this process. Treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2i) alleviates liver fibrosis in patients with type 2 diabetes and NAFLD; however, the role of SGLT2i in ameliorating liver fibrosis in NAFLD by regulating miRNAs remains unclear.

APPROACH AND RESULTS: We monitored the expression of NAFLD-associated miRNAs in the livers of two NAFLD models and observed high expression of miR-34a-5p. miR-34a-5p was highly expressed in mouse primary liver non-parenchymal cells and LX-2 HSCs, and this miRNA was positively correlated with alanine transaminase levels in NAFLD models. Overexpression of miR-34a-5p enhanced LX-2 activation, whereas its inhibition prevented HSCs activation by regulating the TGFβ signaling pathway. The SGLT2i empagliflozin significantly downregulated miR-34a-5p, inhibited the TGFβ signaling pathway, and ameliorated hepatic fibrosis in NAFLD models. Subsequently, GREM2 was identified as a direct target of miR-34a-5p through database prediction and a dual-luciferase reporter assay. In LX-2 HSCs, the miR-34a-5p mimic and inhibitor directly downregulated and upregulated GREM2, respectively. Overexpressing GREM2 inactivated the TGFβ pathway whereas GREM2 knockdown activated it. Additionally, empagliflozin upregulated Grem2 expression in NAFLD models. In methionine- and choline-deficient diet-fed ob/ob mice, a fibrosis model, empagliflozin downregulated miR-34a-5p and upregulated Grem2 to improve liver fibrosis.

CONCLUSIONS: Empagliflozin ameliorates NAFLD-associated fibrosis by downregulating miR-34a-5p and targeting GREM2 to inhibit the TGFβ pathway in HSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app