We have located links that may give you full text access.
High-field magnetic resonance microscopy of aortic plaques in a mouse model of atherosclerosis.
Magma 2023 July 9
OBJECTIVES: Pre-clinical models of human atherosclerosis are extensively used; however, traditional histological methods do not allow for a holistic view of vascular lesions. We describe an ex-vivo, high-resolution MRI method that allows the 3 dimensional imaging of the vessel for aortic plaque visualization and quantification.
MATERIALS AND METHODS: Aortas from apolipoprotein-E-deficient (apoE-/- ) mice fed an atherogenic diet (group 1) or a control diet (group 2) were subjected to 14 T MR imaging using a 3D gradient echo sequence. The obtained data sets were reconstructed (Matlab), segmented, and analyzed (Avizo). The aortas were further sectioned and subjected to traditional histological analysis (Oil-Red O and hematoxylin staining) for comparison.
RESULTS: A resolution up to 15 × 10x10 μm3 revealed that plaque burden (mm3 ) was significantly (p < 0.05) higher in group 1 (0.41 ± 0.25, n = 4) than in group 2 (0.01 ± 0.01, n = 3). The achieved resolution provided similar detail on the plaque and the vessel wall morphology compared with histology. Digital image segmentation of the aorta's lumen, plaque, and wall offered three-dimensional visualizations of the entire, intact aortas.
DISCUSSION: 14 T MR microscopy provided histology-like details of pathologically relevant vascular lesions. This work may provide the path research needs to take to enable plaque characterization in clinical applications.
MATERIALS AND METHODS: Aortas from apolipoprotein-E-deficient (apoE-/- ) mice fed an atherogenic diet (group 1) or a control diet (group 2) were subjected to 14 T MR imaging using a 3D gradient echo sequence. The obtained data sets were reconstructed (Matlab), segmented, and analyzed (Avizo). The aortas were further sectioned and subjected to traditional histological analysis (Oil-Red O and hematoxylin staining) for comparison.
RESULTS: A resolution up to 15 × 10x10 μm3 revealed that plaque burden (mm3 ) was significantly (p < 0.05) higher in group 1 (0.41 ± 0.25, n = 4) than in group 2 (0.01 ± 0.01, n = 3). The achieved resolution provided similar detail on the plaque and the vessel wall morphology compared with histology. Digital image segmentation of the aorta's lumen, plaque, and wall offered three-dimensional visualizations of the entire, intact aortas.
DISCUSSION: 14 T MR microscopy provided histology-like details of pathologically relevant vascular lesions. This work may provide the path research needs to take to enable plaque characterization in clinical applications.
Full text links
Related Resources
Trending Papers
Clinical guideline on reversal of direct oral anticoagulants in patients with life threatening bleeding.European Journal of Anaesthesiology 2024 May 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app