Add like
Add dislike
Add to saved papers

A prospective controlled, randomized clinical trial of kidney transplant recipients developed personalized tacrolimus dosing using model-based Bayesian Prediction.

For three decades, tacrolimus (Tac) dose adjustment in clinical practice has been calculated empirically according to the manufacturer's labeling based on a patient's body weight. Here, we developed and validated a Population pharmacokinetic (PPK) model including pharmacogenetics (cluster CYP3A4/CYP3A5), age, and hematocrit. Our study aimed to assess the clinical applicability of this PPK model in the achievement of Tac Co (therapeutic trough Tac concentration) compared to the manufacturer's labelling dosage. A prospective two-arm, randomized, clinical trial was conducted to determine Tac starting and subsequent dose adjustments in 90 kidney transplant recipients. Patients were randomized to a control group with Tac adjustment according to the manufacturer's labeling or the PPK group adjusted to reach target Co (6-10 ng/ml) after the first steady state (primary endpoint) using a Bayesian prediction model (NONMEM). A significantly higher percentage of patients from the PPK group (54.8%) compared with the control group (20.8%) achieved the therapeutic target fulfilling 30% of the established superiority margin defined. Patients receiving PPK showed significantly less intra-patient variability compared to the control group, reached the Tac Co target sooner (5 days vs 10 days), and required significantly fewer Tac dose modifications compared to the control group within 90 days following kidney transplant. No statistically significant differences occurred in clinical outcomes. Thus, PPK-based Tac dosing offers significant superiority for starting Tac prescription over classical labeling-based dosing according to the body weight, which may optimize Tac-based therapy in the first days following transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app