We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Nutrition and autophagy deficiency in critical illness.
Current Opinion in Critical Care 2023 August 2
PURPOSE OF REVIEW: Critical illness imposes a severe insult on the body, with various stressors triggering pronounced cell damage. This compromises cellular function, leading to a high risk of multiple organ failure. Autophagy can remove damaged molecules and organelles but appears insufficiently activated during critical illness. This review discusses insight into the role of autophagy in critical illness and the involvement of artificial feeding in insufficient autophagy activation in critical illness.
RECENT FINDINGS: Animal studies manipulating autophagy have shown its protective effects against kidney, lung, liver, and intestinal injury after several critical insults. Autophagy activation also protected peripheral, respiratory, and cardiac muscle function, despite aggravated muscle atrophy. Its role in acute brain injury is more equivocal. Animal and patient studies showed that artificial feeding suppressed autophagy activation in critical illness, particularly with high protein/amino acid doses. Feeding-suppressed autophagy may explain short and long-term harm by early enhanced calorie/protein feeding in large randomized controlled trials.
SUMMARY: Insufficient autophagy during critical illness is at least partly explained by feeding-induced suppression. This may explain why early enhanced nutrition failed to benefit critically ill patients or even induced harm. Safe, specific activation of autophagy avoiding prolonged starvation opens perspectives for improving outcomes of critical illness.
RECENT FINDINGS: Animal studies manipulating autophagy have shown its protective effects against kidney, lung, liver, and intestinal injury after several critical insults. Autophagy activation also protected peripheral, respiratory, and cardiac muscle function, despite aggravated muscle atrophy. Its role in acute brain injury is more equivocal. Animal and patient studies showed that artificial feeding suppressed autophagy activation in critical illness, particularly with high protein/amino acid doses. Feeding-suppressed autophagy may explain short and long-term harm by early enhanced calorie/protein feeding in large randomized controlled trials.
SUMMARY: Insufficient autophagy during critical illness is at least partly explained by feeding-induced suppression. This may explain why early enhanced nutrition failed to benefit critically ill patients or even induced harm. Safe, specific activation of autophagy avoiding prolonged starvation opens perspectives for improving outcomes of critical illness.
Full text links
Trending Papers
Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review.Avicenna Journal of Medicine 2023 July
ANCA-associated vasculitis - Treatment Standard.Nephrology, Dialysis, Transplantation 2023 November 9
ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists.Anesthesiology 2023 November 21
Common postbariatric surgery emergencies for the acute care surgeon: What you need to know.Journal of Trauma and Acute Care Surgery 2023 December 2
How we approach titrating PEEP in patients with acute hypoxemic failure.Critical Care : the Official Journal of the Critical Care Forum 2023 October 32
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app