JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Sequential Extracorporeal Therapy in Sepsis.

Sepsis is a life-threatening syndrome initiated by a dysregulated host response to infection. Maladaptive inflammatory burst damages host tissues and causes organ dysfunction, the burden of which has been demonstrated as the paramount predictor of worse clinical outcomes. In this setting, septic shock represents the most lethal complication of sepsis and implies profound alterations of both the cardiovascular system and cellular metabolism with consequent high mortality rate. Although an increasing amount of evidence attempts to characterize this clinical condition, the complexity of multiple interconnections between underlying pathophysiological pathways requires further investigations. Accordingly, most therapeutic interventions remain purely supportive and should be integrated in light of the continuous organ cross-talk, in order to match a patient's specific needs. In this context, different organ supports may be combined to replace multiple organ dysfunctions through the application of sequential extracorporeal therapy in sepsis (SETS). In this chapter, we provide an overview of sepsis-induced organ dysfunction, focusing on the pathophysiological pathways that are triggered by endotoxin. Based on the need to apply specific blood purification techniques in specific time windows with different targets, we suggest a sequence of extracorporeal therapies. Accordingly, we reported the hypothesis that sepsis-induced organ dysfunction may benefit the most from SETS. Finally, we point out basic principles of this innovative approach and describe a multifunctional platform that allows SETS, in order to make clinicians aware of this new therapeutic frontier for critically ill patients.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app