Add like
Add dislike
Add to saved papers

Potential direct role of synuclein in dopamine transport and its implications for Parkinson's disease pathogenesis.

Parkinson Disease (PD) is a progressive neurodegenerative disorder that is caused by dysfunction and death of dopaminergic neurons. Mutations in the gene encoding α-synuclein (ASYN) have been linked with familial PD (FPD). Despite important role of ASYN in PD pathology, its normal biological function has not been clarified, although direct action of ASYN in synaptic transmission and dopamine (DA+ ) release have been proposed. In the present report we propose a novel hypothesis that ASYN functions as DA+ /H+ exchanger that can facilitate transport of dopamine across synaptic vesicle (SV) membrane by taking advantage of proton gradient between SV lumen and cytoplasm. According to this hypothesis, normal physiological role of ASYN consists of fine-tuning levels of dopamine in the SVs based on cytosolic concentration of dopamine and intraluminal pH. This hypothesis is based on similarity in domain structure of ASYN and pHILP, a designed peptide developed to mediate loading of lipid nanoparticles with the cargo molecules. We reason that carboxy-terminal acidic loop D2b domain in both ASYN and pHILP binds cargo molecules. By mimicking DA+ association with E/D residues in D2b domain of ASYN using Tyrosine replacement approach (TR) we have been able to estimate that ASYN is able to transfer 8-12 molecules of dopamine across SV membrane on each DA+ /H+ exchange cycle. Our results suggest that familial PD mutations (A30P, E46K, H50Q, G51D, A53T and A53E) will interfere with different steps of the exchange cycle, resulting in partial loss of dopamine transport function phenotype. We also predict that similar impairment in ASYN DA+ /H+ exchange function also occurs as a result on neuronal aging due to changes in SV lipid composition and size and also dissipation of pH gradient across SV membrane. Proposed novel functional role of ASYN provides novel insights into its biological role and its role in PD pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app