Add like
Add dislike
Add to saved papers

PVT1 alleviates hypoxia-induced endothelial apoptosis by enhancing autophagy via the miR-15b-5p/ATG14 and miR-424-5p/ATG14 axis.

Endothelial dysfunction plays a crucial role in the pathogenesis of vascular disease. Long noncoding RNA (lncRNA) and microRNA (miRNA) play important roles in various cellular processes and are involved in several vascular endothelial cells (VECs) biological processes, including cell growth, migration, autophagy, and apoptosis. The functions of plasmacytoma variant translocation 1 (PVT1) in VECs have been progressively investigated in recent years, mainly with regard to proliferation and migration of endothelial cells (ECs). However, the mechanism underlying the regulation of autophagy and apoptosis in human umbilical vein endothelial cells (HUVEC) by PVT1 remains unclear. The present study showed that PVT1 knockdown accelerated apoptosis induced by oxygen and glucose deprivation (OGD) through suppression of cellular autophagy. Bioinformatic prediction of PVT1 target miRNAs revealed that PVT1 interacts with miR-15b-5p and miR-424-5p. The study further showed that miR-15b-5p and miR-424-5p inhibit the functions of autophagy related 14 (ATG14) and suppress cellular autophagy. The results showed that PVT1 can function as a competing endogenous RNA (ceRNA) of miR-15b-5p and miR-424-5p and promote cellular autophagy by competitive binding, which down-regulates apoptosis. The results showed that PVT1 can function as a competing endogenous RNA (ceRNA) of miR-15b-5p and miR-424-5p and promote cellular autophagy through competitive binding, which down-regulates apoptosis. The study provides insight into a novel therapeutic target that may be explored in the future for the treatment of cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app