A Novel 8-Predictors Signature to Predict Complicated Disease Course in Pediatric-onset Crohn's Disease: A Population-based Study.
Inflammatory Bowel Diseases 2023 June 3
BACKGROUND: The identification of patients at high risk of a disabling disease course would be invaluable in guiding initial therapy in Crohn's disease (CD). Our objective was to evaluate a combination of clinical, serological, and genetic factors to predict complicated disease course in pediatric-onset CD.
METHODS: Data for pediatric-onset CD patients, diagnosed before 17 years of age between 1988 and 2004 and followed more than 5 years, were extracted from the population-based EPIMAD registry. The main outcome was defined by the occurrence of complicated behavior (stricturing or penetrating) and/or intestinal resection within the 5 years following diagnosis. Lasso logistic regression models were used to build a predictive model based on clinical data at diagnosis, serological data (ASCA, pANCA, anti-OmpC, anti-Cbir1, anti-Fla2, anti-Flax), and 369 candidate single nucleotide polymorphisms.
RESULTS: In total, 156 children with an inflammatory (B1) disease at diagnosis were included. Among them, 35% (n = 54) progressed to a complicated behavior or an intestinal resection within the 5 years following diagnosis. The best predictive model (PREDICT-EPIMAD) included the location at diagnosis, pANCA, and 6 single nucleotide polymorphisms. This model showed good discrimination and good calibration, with an area under the curve of 0.80 after correction for optimism bias (sensitivity, 79%, specificity, 74%, positive predictive value, 61%, negative predictive value, 87%). Decision curve analysis confirmed the clinical utility of the model.
CONCLUSIONS: A combination of clinical, serotypic, and genotypic variables can predict disease progression in this population-based pediatric-onset CD cohort. Independent validation is needed before it can be used in clinical practice.
METHODS: Data for pediatric-onset CD patients, diagnosed before 17 years of age between 1988 and 2004 and followed more than 5 years, were extracted from the population-based EPIMAD registry. The main outcome was defined by the occurrence of complicated behavior (stricturing or penetrating) and/or intestinal resection within the 5 years following diagnosis. Lasso logistic regression models were used to build a predictive model based on clinical data at diagnosis, serological data (ASCA, pANCA, anti-OmpC, anti-Cbir1, anti-Fla2, anti-Flax), and 369 candidate single nucleotide polymorphisms.
RESULTS: In total, 156 children with an inflammatory (B1) disease at diagnosis were included. Among them, 35% (n = 54) progressed to a complicated behavior or an intestinal resection within the 5 years following diagnosis. The best predictive model (PREDICT-EPIMAD) included the location at diagnosis, pANCA, and 6 single nucleotide polymorphisms. This model showed good discrimination and good calibration, with an area under the curve of 0.80 after correction for optimism bias (sensitivity, 79%, specificity, 74%, positive predictive value, 61%, negative predictive value, 87%). Decision curve analysis confirmed the clinical utility of the model.
CONCLUSIONS: A combination of clinical, serotypic, and genotypic variables can predict disease progression in this population-based pediatric-onset CD cohort. Independent validation is needed before it can be used in clinical practice.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app