Add like
Add dislike
Add to saved papers

High phytoremediation and translocation potential of an invasive weed species (Amaranthus retroflexus) in Europe in metal-contaminated areas.

We demonstrated the metal accumulation potential of Amaranthus retorflexus, a European weed species, both in moderately and strongly metal-contaminated sites. Metal accumulation in roots, stems, and leaves were studied. We also calculated the bioaccumulation factor (BAF), and translocation factor (TF) values to quantify the metal accumulation, and translocation between plant organs. Our findings indicated that metal accumulation correlated with metal concentration; that is plant organs accumulated higher concentration of metals in the contaminated area than in the control one. We found that the concentrations of Ba, Mn, Sr and Zn were the highest in leaves, and Al, Cr, Cu, Fe and Pb in roots. High BAF value was found for Sr in all studied areas, indicating this metal's high accumulation potential of Amaranthus retorflexus. High TF values were found for Al, Ba, Cu, Fe, Mn, Sr and Zn; these metals were successfully transported to aboveground plant organs. We demonstrated that A. retroflexus, a fast-growing, rapidly spreading weed in Europe, was especially useful for heavy metal phytoremediation and phytoextraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app