Add like
Add dislike
Add to saved papers

Risk Factors for Common Kidney Stones Are Correlated with Kidney Function Independent of Stone Composition.

INTRODUCTION: Kidney stone type varies with age, sex, season, and medical conditions. Lower estimate glomerular filtration rate (eGFR) leads to changes in urine chemistry, and risk factors for kidney stones are thought to vary by stone type. We explore the association between eGFR, urine risk factors, and common stone compositions.

METHODS: This was a retrospective cohort study of 811 kidney stone patients seen at Yale Medicine between 1994 and 2021 with serum chemistries and 24-h urine chemistries matched within 1 year of baseline stone analysis. Patients' eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 2021 equation. Demographics and medical history were compared by χ2 tests. 24-h urine chemistries and stone analyses were analyzed by one-way ANOVA. Linear regressions were performed to control for demographics, comorbidities, and stone composition.

RESULTS: With lower eGFR, the proportion of calcium stones declined while uric acid (UA) stones increased. On univariable analysis, lower eGFR was associated with lower urine pH, calcium, citrate, UA, magnesium, phosphorus, and ammonium. On multivariable analysis, controlling for age, sex, ethnicity, body mass index, comorbidities, and stone type, these factors remained significant. Stone formers with lower eGFR had elevated supersaturation for UA, but reduced supersaturations for calcium-containing stones. Though urine oxalate was significant on univariable analysis, it was not on multivariable analysis.

CONCLUSION: Changes in urine parameters are strongly correlated with eGFR regardless of stone type. Renal function may play a key role in modulating kidney stone risk factors. Strategies to mitigate stone risk may need to vary with kidney function, especially when patient urine or stone composition data are unavailable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app