Comprehensive analysis of untargeted metabolomics and lipidomics in girls with central precocious puberty.
OBJECTIVE: Central precocious puberty (CPP) is a rare condition that causes early sexual development in children. Although the cure is effective, the etiology of central precocious puberty is unclear.
METHODS: In total, 10 girls with central precocious puberty and same number of age-matched female controls were enrolled. Plasma samples were collected from each participant and subjected to untargeted metabolomics and lipidomics. Student's t -tests were employed to compare the mean of each metabolite and lipid. Furthermore, orthogonal partial least-squares discriminant analysis was conducted and the variable importance in the projection was calculated to identify differentially expressed metabolites or lipids. Subsequent bioinformatics was conducted to investigate the potential function of differentially expressed metabolites and lipids.
RESULTS: Fifty-nine differentially expressed metabolites were identified based on the criteria used (variable importance in the projection >1 and a P value < 0.05). Kyoto Encyclopedia Genes and Genome (KEGG) enrichment analysis showed that differentially expressed metabolites were enriched in four pathways: beta-alanine metabolism, histidine metabolism, bile secretion, and steroid hormone biosynthesis. As for the lipidomics, 41 differentially expressed lipids were observed and chain length analysis and lipid saturation analysis yielded similar results. Significant differences between the two groups were only observed in (O-acyl) ω-hydroxy fatty acids (OAHFA).
CONCLUSION: The present study showed that antibiotic overuse, increased meat consumption, and obesity may have potential roles in the development of central precocious puberty in girls. Several metabolites have diagnostic value but further research is required.
METHODS: In total, 10 girls with central precocious puberty and same number of age-matched female controls were enrolled. Plasma samples were collected from each participant and subjected to untargeted metabolomics and lipidomics. Student's t -tests were employed to compare the mean of each metabolite and lipid. Furthermore, orthogonal partial least-squares discriminant analysis was conducted and the variable importance in the projection was calculated to identify differentially expressed metabolites or lipids. Subsequent bioinformatics was conducted to investigate the potential function of differentially expressed metabolites and lipids.
RESULTS: Fifty-nine differentially expressed metabolites were identified based on the criteria used (variable importance in the projection >1 and a P value < 0.05). Kyoto Encyclopedia Genes and Genome (KEGG) enrichment analysis showed that differentially expressed metabolites were enriched in four pathways: beta-alanine metabolism, histidine metabolism, bile secretion, and steroid hormone biosynthesis. As for the lipidomics, 41 differentially expressed lipids were observed and chain length analysis and lipid saturation analysis yielded similar results. Significant differences between the two groups were only observed in (O-acyl) ω-hydroxy fatty acids (OAHFA).
CONCLUSION: The present study showed that antibiotic overuse, increased meat consumption, and obesity may have potential roles in the development of central precocious puberty in girls. Several metabolites have diagnostic value but further research is required.
Full text links
Trending Papers
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Abdominal wall closure.British Journal of Surgery 2023 September 16
Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement.Nature Reviews. Endocrinology 2023 September 6
MRI abnormalities in Creutzfeldt-Jakob disease and other rapidly progressive dementia.Journal of Neurology 2023 September 13
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app