Add like
Add dislike
Add to saved papers

Mechanistic insight into humic acid-enhanced sonophotocatalytic removal of 17β-estradiol: Formation and contribution of reactive intermediates.

In this study, humic acid (HA) enhanced 17β-estradiol (17β-E2) degradation by Er3+ -CdS/MoS2 (ECMS) was investigated under ultrasonic and light conditions. The degradation reaction rate of 17β-E2 was increased from (14.414 ± 0.315) × 10-3  min-1 to (122.677 ± 1.729) × 10-3  min-1 within 90 min sonophotocatalytic (SPC) reaction with the addition of HA. The results of quenching coupled with chemical probe experiments indicated that more reactive intermediates (RIs) including reactive oxygen species (ROSs) and triplet-excited states were generated in the HA-enhanced sonophotocatalytic system. The triplet-excited states of humic acid (3 HA*), hydroxyl radical (•OH), and superoxide radical (•O2 - ) were the dominant RIs for 17β-E2 elimination. In addition, the energy- and electron-transfer process via coexisting HA also account for 12.86% and 29.24% contributions, respectively. The quantum yields of RIs in the SPC-ECMS-HA system followed the order of 3 HA* > H2 O2 >1 O2  > •O2 - > •OH. Moreover, the spectral and fluorescence characteristics of HA were further analyzed during the sonophotocatalytic reaction process. The study expanded new insights into the comprehension of the effects of omnipresent coexisting HA and RIs formation for the removal of 17β-E2 during the sonophotocatalytic process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app