Add like
Add dislike
Add to saved papers

The response mechanism of microorganisms to the organic carbon-driven formation of black and odorous water.

The formation of black and odorous water is a complex process influenced by various factors such as organic matter and environmental conditions. However, there are limited studies on the role of microorganisms in water and sediment during the blackening and odorization process. In this study, we investigated the characteristics of black and odorous water formation by simulating organic carbon-driven black and odorous water through indoor experiments. The study revealed that the water turned black and odorous when DOC reached 50 mg/L and the microbial community structure in the water changed significantly during this process, with the relative abundance of Desulfobacterota increasing significantly and Desulfovibrio being the main dominant genus in Desulfobacterota. Additionally, we observed a notable decrease in the α-diversity of the microbial community in water and a considerable increase in microbial function of sulfur compounds respiration in water. In contrast, the sediment microbial community changed slightly, and the main functions of the sediment microbial community remained unchanged. The partial least squares path model (PLS-PM) suggested that organic carbon will drive the blackening and odorization process by affecting DO levels and microbial community structure and that the contribution of Desulfobacterota in water to the formation of black and odorous water was higher than that in sediment. Overall, our study provides insights into the characteristics of black and odorous water formation and suggests potential ways to prevent its formation by controlling DOC and inhibiting the growth of Desulfobacterota in water bodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app