Add like
Add dislike
Add to saved papers

Areca catechu L. ameliorates chronic unpredictable mild stress-induced depression behavior in rats by the promotion of the BDNF signaling pathway.

OBJECTIVES: In this study, we have investigated the anti-depressant effects of the fruit Areca catechu L. (ACL) and elucidated its potential underlying mechanism using a rat model of chronic unpredictable mild stress (CUMS).

METHODS: CUMS was induced in rats to establish a depression animal model for 28 days. According to the baseline sucrose preference, the male rats were divided into 6 different groups. They were treated with paroxetine hydrochloride, ACL, and water once a day until the behavioral tests were performed. The levels of corticosterone (CORT), malondialdehyde (MDA), catalase (CAT), and total superoxide dismutase (T-SOD) in serum were detected using a commercial kit, and the concentrations of 5-hydroxytryptamine (5-HT) and dopamine (DA) monoamine neurotransmitters in the brain tissues were detected by liquid chromatography-tandem mass spectrometry. doublecortin (DCX) expression in the hippocampal dentate gyrus (DG) was determined by immunofluorescence, and the relative abundance of brain-derived neurotrophic factor (BDNF), TrkB, PI3K, p-AKT/AKT, PSD-95, and p-GSK-3β/GSK-3β of brain tissues were assayed by western blot.

RESULTS: ACL markedly increased sucrose preference, decreased the immobility time, and shortened the feeding latency of CUMS-induced rats. CUMS induction resulted in marked changes in the contents of the monoamine neurotransmitters (5-HT and DA) in the hippocampus and cortex of brain tissues and the levels of CORT, MDA, CAT, and T-SOD in serum, whereas ACL administration alleviated these considerable changes. ACL promoted DCX expression in DG and increased the protein levels of BDNF, TrkB, PI3K, p-AKT/AKT, PSD-95, and p-GSK-3β/GSK-3β in the brains of CUMS-induced rats.

CONCLUSIONS: Our results indicated that ACL may improve depression-like behaviors in CUMS-induced rats by decreasing the hyperfunction and oxidative stress of the hypothalamic-pituitary-adrenal axis, stimulating hippocampal neurogenesis, and activating the BDNF signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app