Add like
Add dislike
Add to saved papers

Radiological Hazard Assessment of High-Level Natural Radionuclides in Surface Sediments Along Red River, Vietnam.

The Red River is one of the largest rivers that plays an important role in the economic development of North Vietnam. There are many radionuclides bearing rare earth, uranium ore mines, mining industrial zones and magma intrusive formations along this river. The contamination and accumulation of radionuclides could exist at high concentration in surface sediments of this river. Thus, the present investigation aims to study the activity concentrations of 226 Ra, 232 Th (228 Ra), 40 K, and 137 Cs in Red River surface sediments. Thirty sediment samples were collected, and their activity concentration was calculated using high-purity germanium gamma-ray detector. The observed results ranged from 51.0 ± 2.1 to 73.6 ± 3.7 for 226 Ra, 71.4 ± 3.6 to 103 ± 5.2 for 232 Th, 507 ± 24.0 to 846 ± 42.3 for 40 K, and ND (not detected) to 1.33 ± 0.06 Bq/kg for 137 Cs, respectively. In general, the natural radionuclides concentration of 226 Ra, 232 Th (228 Ra), and 40 K is higher than the average world average values. This indicated that the natural radionuclides could contribute from similar and principal sources surrounding the upstream of Lao Cai where distributed uranium ore mines, radionuclide bearing rare earth mines, mining industrial zones and intrusive formations. Regarding the radiological hazard assessment, results of the indices computed such as absorbed gamma dose rate (D), the excess lifetime cancer risk (ELCR), and the annual effective dose equivalent (AEDE) were nearly two times higher than world average values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app