Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prolactin Regulates Testicular Gene Expression and Cell Cycle Processes Predominantly via JAK2/STAT5 Pathway in the Male Rat.

Endocrinology 2023 June 7
Hyperprolactinemia is prevalent in up to 16% of infertile males. Although the prolactin receptor (PRLR) is present on various testicular cells, the physiological role of this receptor in spermatogenesis remains elusive. The aim of this study is to delineate prolactin actions in rat testicular tissue. Serum prolactin, developmental expression of PRLR, signaling pathways associated, and gene transcription regulation in the testes were investigated. Serum prolactin and testicular PRLR expression was found to be significantly increased at pubertal and adult ages as compared to prepubertal. Further, PRLR activated the JAK2/STAT5 pathway, but not the MAPK/ERK and PI3K/AKT pathway in the testicular cells. Gene expression profiling following prolactin treatment in seminiferous tubule culture resulted in a total of 692 differentially expressed genes, of which 405 were upregulated and 287 were downregulated. Enrichment map analysis showed that prolactin target genes are involved in processes such as cell cycle, male reproduction, chromatin remodeling, and cytoskeletal organization. Novel gene targets of prolactin whose role in testes is unexplored were obtained and validated by qPCR. Additionally, 10 genes involved in cell cycle process were also validated; 6 genes (Ccna1, Ccnb1, Ccnb2, Cdc25a, Cdc27, Plk1) were found to be significantly upregulated, whereas 4 genes (Ccar2, Nudc, Tuba1c, Tubb2a) were found to be significantly downregulated in testes after treatment with prolactin. Taken together, the findings from this study suggest a crucial role of prolactin in male reproduction and identified target genes regulated by prolactin in the testes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app