Add like
Add dislike
Add to saved papers

One-step quaternization and macromolecular reconstruction to prepare micro-/nano-porous cellulose beads from homogeneous solution for low-concentration amoxicillin removal.

Carbohydrate Polymers 2023 September 2
Designing advanced functional cellulose-based materials by one-step homogeneous preparation technology is a great challenge since cellulose is insoluble in common solvents or difficult to regenerate and shape. Quaternized cellulose beads (QCB) were prepared from a homogeneous solution by one-step cellulose quaternization homogeneous modification and macromolecules' reconstruction technology. Morphological and structural characterizations of QCB were conducted by SEM, FTIR and XPS, etc. The adsorption behavior of QCB was studied using amoxicillin (AMX) as a model molecule. The adsorption of QCB for AMX was multilayer adsorption controlled by both physical adsorption and chemical adsorption. The removal efficiency for 60 mg L-1 AMX reached 98.60 % through electrostatic interaction, and the adsorption capacity reached 30.23 mg g-1 . AMX adsorption was almost reversible without loss of binding efficiency after three cycles. This facile and green method may offer a promising strategy for the development of functional cellulose materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app