Degradation of xylan by human gut Bacteroides xylanisolvens XB1A.
Carbohydrate Polymers 2023 September 2
Although many polysaccharides utilization loci (PULs) have been investigated by genomics and transcriptomics, the detailed functional characterization lags severely behind. We hypothesize that PULs on the genome of Bacteroides xylanisolvens XB1A (BX) dictate the degradation of complex xylan. To address, xylan S32 isolated from Dendrobium officinale was employed as a sample polysaccharide. We firstly showed that xylan S32 promoted the growth of BX which might degrade xylan S32 into monosaccharides and oligosaccharides. We further showed that this degradation was performed mainly via two discrete PULs in the genome of BX. Briefly, a new surface glycan binding protein (SGBP) BX_29290SGBP was identified, and shown to be essential for the growth of BX on xylan S32. Two cell surface endo-xylanases Xyn10A and Xyn10B cooperated to deconstruct the xylan S32. Intriguingly, genes encoding Xyn10A and Xyn10B were mainly distributed in the genome of Bacteroides spp. In addition, BX metabolized xylan S32 to produce short chain fatty acids (SCFAs) and folate. Taken together, these findings provide new evidence to understand the food source of BX and the BX-directed intervention strategy by xylan.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app