Add like
Add dislike
Add to saved papers

Design, synthesis and biological evaluation of 4-(4-aminophenoxy)picolinamide derivatives as potential antitumor agents.

Cancer is a leading cause of death in humans. Molecular targeted therapy for cancer has become a research hotspot as it is associated with low toxicity and high efficiency. In this study, a total of 36 derivatives of 4-(4-aminophenoxy)pyridinamide were designed and synthesized, based on the analysis of the binding patterns of cabozantinib and BMS-777607 to MET protein. Most target compounds exhibited moderate to excellent antiproliferative activity against three different cell lines (A549, HeLa and MCF-7). A total of 7 compounds had stronger inhibitory activities than cabozantinib, and the IC50 value of the most promising compound 46 was 0.26 μM against the A549 cells, which was 2.4 times more active than that of cabozantinib. The structure-activity relationship of the target compounds was analyzed and summarized, and the action mechanism was discussed. The acridine orange (AO) staining assay and cell cycle apoptosis revealed that compound 46 dose-dependently induced apoptosis of A549 cells, and blocked the cells mainly in G0/G1 phase. The IC50 value of compound 46 on c-Met kinase was 46.5 nM. Further docking studies and molecular dynamics simulations signaled that compound 46 formed four key hydrogen bonds to c-Met kinase, and these key amino acids played a major role in binding free energy. In addition, compound 46 also showed good pharmacokinetic characteristics in rats. In conclusion, compound 46 is a promising antitumor agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app