Ablation of C-type natriuretic peptide/cGMP signaling in fibroblasts exacerbates adverse cardiac remodeling in mice.
JCI Insight 2023 May 26
Excessive activation of cardiac fibroblasts (CFs) in response to injury provokes cardiac fibrosis, stiffness, and failure. The local mediators counter-regulating this response remain unclear. Exogenous C-type natriuretic peptide (CNP) exerted antifibrotic effects in preclinical models. To unravel the role of the endogenous hormone, we generated mice with fibroblast-restricted deletion (KO) of guanylyl cyclase-B (GC-B), the cGMP-synthesizing CNP receptor.CNP activated GC-B/cGMP signaling in human and murine CFs, preventing proliferative and promigratory effects of AngiotensinII (AngII) and TGF-β. Fibroblast-specific GC-B-KO mice showed enhanced fibrosis in response to AngII infusions. Moreover, after two weeks of mild pressure-overload induced by transverse aortic constriction (TAC), such KO mice had augmented cardiac fibrosis and hypertrophy, together with systolic and diastolic contractile dysfunction. This was associated with increased expression of the profibrotic genes collagen I, III and periostin. Notably, such responses to AngII and TAC were greater in female as compared to male KO mice. Enhanced AngII-induced CNP expression in female hearts and augmented GC-B expression and activity in female CFs may contribute to this sex disparity.The results show that paracrine CNP signaling in CFs has antifibrotic and antihypertrophic effects. The CNP/GC-B/cGMP pathway might be a target for therapies combating pathological cardiac remodeling.
Full text links
Trending Papers
Abdominal wall closure.British Journal of Surgery 2023 September 16
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app