Add like
Add dislike
Add to saved papers

Exploring the performance of Escherichia coli outer membrane vesicles as a tool for vaccine development against Chagas disease.

BACKGROUND: Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity.

OBJECTIVES: Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease.

METHODS: To achieve this, genetic manipulation was carried out on E. coli using an engineered plasmid containing the Tc24 Trypanosoma cruzi antigen. The goal was to induce the release of OMVs displaying the parasite protein on their surface.

FINDINGS: As a proof of principle, we observed that native OMVs - as well as those carrying the T. cruzi antigen - were able to trigger a slight, but functional humoral response at low immunization doses. Of note, compared to the non-immunized group, native OMVs-vaccinated animals survived the lethal challenge and showed minor parasitemia values, suggesting a possible involvement of innate trained immunity mechanism.

MAIN CONCLUSION: These results open the range for further research on the design of new carrier strategies focused on innate immunity activation as an additional immunization target and venture to seek for alternative forms in which OMVs could be used for optimizing vaccine development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.
Urinary Tract Infections: Core Curriculum 2024.American Journal of Kidney Diseases 2023 October 31

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app