Add like
Add dislike
Add to saved papers

TIAM1 acts as an actin organization regulator to control adipose-derived pericyte cell fate.

JCI Insight 2023 May 23
Pericytes are multipotent mesenchymal precursor cells that demonstrate tissue-specific properties. In this study, by comparing human adipose and periosteal-derived pericyte microarrays, we identified TIAM1 as a key regulator of cell morphology and differentiation decisions. TIAM1 represents a tissue-specific determinant between predispositions for adipocytic versus osteoblastic differentiation in human pericytes. TIAM1 overexpression promotes an adipogenic phenotype, whereas its downregulation amplifies osteogenic differentiation. These results were replicated in vivo xenograft animal model, in which TIAM1 misexpression altered bone or adipose tissue generation in an intramuscular xenograft animal model. Changes in pericyte differentiation potential induced by TIAM1 misexpression correlated with actin organization and altered cytoskeletal morphology. Small molecule inhibitors of either Rac1 or RhoA/ROCK signaling reversed TIAM1-induced morphology and differentiation in pericytes. Finally, pericytes within calcified vessels demonstrated decreased TIAM1 expression in the diseased area compared to the healthy tissue. In summary, our results demonstrate that TIAM1 regulates the cellular morphology and differentiation potential of human pericytes, representing a molecular switch between osteogenic and adipogenic cell fates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app