We have located links that may give you full text access.
Photobiomodulation therapy at 632 nm wavelength ameliorates intrauterine adhesion via activation of cAMP/PKA/CREB pathway.
Photochemistry and Photobiology 2023 May 23
Intrauterine adhesion (IUA), a major cause of uterine infertility, is pathologically characterized by endometrial fibrosis. Current treatments for IUA have poor efficacy with high recurrence rate, and restoring uterine functions is difficult. We aimed to determine the therapeutic efficacy of photobiomodulation (PBM) therapy on IUA and elucidate its underlying mechanisms. A rat IUA model was established via mechanical injury, and PBM was applied intrauterinely. The uterine structure and function were evaluated using ultrasonography, histology, and fertility tests. PBM therapy induced a thicker, more intact, and less fibrotic endometrium. PBM also partly recovered endometrial receptivity and fertility in IUA rats. A cellular fibrosis model was then established with human endometrial stromal cells (ESCs) cultured in the presence of TGF-β1. PBM alleviated TGF-β1-induced fibrosis and triggered cAMP/PKA/CREB signaling in ESCs. Pretreatment with the inhibitors targeting this pathway weakened PBM's protective efficacy in the IUA rats and ESCs. Therefore, we conclude that PBM improved endometrial fibrosis and fertility via activating cAMP/PKA/CREB signaling in IUA uterus. This study sheds more lights on the efficacy of PBM as a potential treatment for IUA.
Full text links
Trending Papers
Fluid Resuscitation in Patients With Traumatic Brain Injury: A Comprehensive Review.Curēus 2023 August
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app