Machine learning for clustering and postclosure outcome of adult CHD-PAH patients with borderline hemodynamics.
Journal of Heart and Lung Transplantation 2023 May 20
BACKGROUND: Patients with uncorrected isolated simple shunts associated pulmonary arterial hypertension (PAH) had increased mortality. Treatment strategies for borderline hemodynamics remain controversial. This study aims to investigate preclosure characteristics and its association with postclosure outcome in this group of patients.
METHODS: Adults with uncorrected isolated simple shunts associated PAH were included. Peak tricuspid regurgitation velocity<2.8 m/sec with normalized cardiac structures was defined as the favorable study outcome. We applied unsupervised and supervised machine learning for clustering analysis and model constructions.
RESULTS: Finally, 246 patients were included. During a median follow-up of 414days, 58.49% (62/106) of patients with pretricuspid shunts achieved favorable outcome while 32.22% (46/127) of patients with post-tricuspid shunts. In unsupervised learning, two clusters were identified in both types of shunts. Generally, the oxygen saturation, pulmonary blood flow, cardiac index, dimensions of the right and left atrium, were the major features that characterized the identified clusters. Specifically, mean right atrial pressure, right ventricular dimension, and right ventricular outflow tract helped differentiate clusters in pretricuspid shunts while age, aorta dimension, and systemic vascular resistance helped differentiate clusters for post-tricuspid shunts. Notably, cluster 1 had better postclosure outcome than cluster 2 (70.83% vs 32.55%, p < .001 for pretricuspid and 48.10% vs 16.67%, p < .001 for post-tricuspid). However, models constructed from supervised learning methods did not achieve good accuracy for predicting the postclosure outcome.
CONCLUSIONS: There were two main clusters in patients with borderline hemodynamics, in which one cluster had better postclosure outcome than the other.
METHODS: Adults with uncorrected isolated simple shunts associated PAH were included. Peak tricuspid regurgitation velocity<2.8 m/sec with normalized cardiac structures was defined as the favorable study outcome. We applied unsupervised and supervised machine learning for clustering analysis and model constructions.
RESULTS: Finally, 246 patients were included. During a median follow-up of 414days, 58.49% (62/106) of patients with pretricuspid shunts achieved favorable outcome while 32.22% (46/127) of patients with post-tricuspid shunts. In unsupervised learning, two clusters were identified in both types of shunts. Generally, the oxygen saturation, pulmonary blood flow, cardiac index, dimensions of the right and left atrium, were the major features that characterized the identified clusters. Specifically, mean right atrial pressure, right ventricular dimension, and right ventricular outflow tract helped differentiate clusters in pretricuspid shunts while age, aorta dimension, and systemic vascular resistance helped differentiate clusters for post-tricuspid shunts. Notably, cluster 1 had better postclosure outcome than cluster 2 (70.83% vs 32.55%, p < .001 for pretricuspid and 48.10% vs 16.67%, p < .001 for post-tricuspid). However, models constructed from supervised learning methods did not achieve good accuracy for predicting the postclosure outcome.
CONCLUSIONS: There were two main clusters in patients with borderline hemodynamics, in which one cluster had better postclosure outcome than the other.
Full text links
Trending Papers
Management of type 2 diabetes in the new era.Hormones : International Journal of Endocrinology and Metabolism 2023 September 14
Beta-blocker therapy in patients with acute myocardial infarction: not all patients need it.Acute and critical care. 2023 August
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Abdominal wall closure.British Journal of Surgery 2023 September 16
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app