A comparative study of the neuroprotective effects of dl-3-n-butylphthalide and edaravone dexborneol on cerebral ischemic stroke rats.
European Journal of Pharmacology 2023 May 18
INTRODUCTION: DL-3-n-butylphthalide (NBP) and edaravone dexborneol (Eda-Dex) are two promising reagents for stroke treatment. However, the impacts of NBP and Eda-Dex on poststroke mental deficits are still poorly understood. In this study, we aimed to investigate and compare the influences of NBP and Eda-Dex on neurological function and cognitive behavior in rats with ischemic stroke.
METHODS: An ischemic stroke model was established by middle cerebral artery occlusion (MCAO). After peritoneal administration of the drugs, the rats were subjected to neurological deficit evaluation, cerebral blood flow (CBF) assays, cerebral infarct area evaluations or behavioral tests. Brain tissues were collected and further analyzed by enzyme-linked immunosorbent assay (ELISA), western blotting or immunohistochemistry.
RESULTS: NBP and Eda-Dex significantly decreased the neurological score, reduced the cerebral infarct area and improved CBF. Behavioral changes as assessed in the sucrose preference test, novel object recognition test, and social interaction test were significantly alleviated by NBP and Eda-Dex in rats with ischemic stroke. Moreover, NBP and Eda-Dex significantly suppressed inflammation by targeting the nuclear factor kappa-B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and significantly inhibited oxidative stress by targeting the kelch-1ike ECH-associated protein l/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway. In addition, NBP and Eda-Dex distinctly suppressed the activation of microglia and astrocytes and improved neuronal viability in the ischemic brain.
CONCLUSIONS: NBP and Eda-Dex improved neurological function and alleviated cognitive disorders in rats with ischemic stroke by synergistically inhibiting inflammation and oxidative stress.
METHODS: An ischemic stroke model was established by middle cerebral artery occlusion (MCAO). After peritoneal administration of the drugs, the rats were subjected to neurological deficit evaluation, cerebral blood flow (CBF) assays, cerebral infarct area evaluations or behavioral tests. Brain tissues were collected and further analyzed by enzyme-linked immunosorbent assay (ELISA), western blotting or immunohistochemistry.
RESULTS: NBP and Eda-Dex significantly decreased the neurological score, reduced the cerebral infarct area and improved CBF. Behavioral changes as assessed in the sucrose preference test, novel object recognition test, and social interaction test were significantly alleviated by NBP and Eda-Dex in rats with ischemic stroke. Moreover, NBP and Eda-Dex significantly suppressed inflammation by targeting the nuclear factor kappa-B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and significantly inhibited oxidative stress by targeting the kelch-1ike ECH-associated protein l/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway. In addition, NBP and Eda-Dex distinctly suppressed the activation of microglia and astrocytes and improved neuronal viability in the ischemic brain.
CONCLUSIONS: NBP and Eda-Dex improved neurological function and alleviated cognitive disorders in rats with ischemic stroke by synergistically inhibiting inflammation and oxidative stress.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app