Add like
Add dislike
Add to saved papers

Hydrogen Bonding Compensation on the Convex Solvent-Exposed Helical Face of IA 3 , an Intrinsically Disordered Protein.

Biochemistry 2023 May 18
Saccharomyces cerevisiae IA3 is a 68 amino acid peptide inhibitor of yeast proteinase A (YPRA) characterized as a random coil when in solution, folding into an N-terminal amphipathic alpha helix for residues 2-32 when bound to YPRA, with residues 33-68 unresolved in the crystal complex. Circular dichroism (CD) spectroscopy results show that amino acid substitutions that remove hydrogen-bonding interactions observed within the hydrophilic face of the N-terminal domain (NTD) of IA3 -YPRA crystal complex reduce the 2,2,2-trifluoroethanol (TFE)-induced helical transition in solution. Although nearly all substitutions decreased TFE-induced helicity compared to wild-type (WT), each construct did retain helical character in the presence of 30% (v/v) TFE and retained disorder in the absence of TFE. The NTDs of 8 different Saccharomyces species have nearly identical amino acid sequences, indicating that the NTD of IA3 may be highly evolved to adopt a helical fold when bound to YPRA and in the presence of TFE but remain unstructured in solution. Only one natural amino acid substitution explored within the solvent-exposed face of the NTD of IA3 induced TFE-helicity greater than the WT sequence. However, chemical modification of a cysteine by a nitroxide spin label that contains an acetamide side chain did enhance TFE-induced helicity. This finding suggests that non-natural amino acids that can increase hydrogen bonding or alter hydration through side-chain interactions may be important to consider when rationally designing intrinsically disordered proteins (IDPs) with varied biotechnological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app