Add like
Add dislike
Add to saved papers

Automated deep neural network-based identification, localization, and tracking of cardiac structures for ultrasound-guided interventional surgery.

BACKGROUND: The increase in the use of ultrasound-guided interventional therapy for cardiovascular diseases has increased the importance of intraoperative real-time cardiac ultrasound image interpretation. We thus aimed to develop a deep learning-based model to accurately identify, localize, and track the critical cardiac structures and lesions (9 kinds in total) and to validate the algorithm's performance using independent data sets.

METHODS: This diagnostic study developed a deep learning-based model using data collected from Fuwai Hospital between January 2018 and June 2019. The model was validated with independent French and American data sets. In total, 17,114 cardiac structures and lesions were used to develop the algorithm. The model findings were compared with those of 15 specialized physicians in multiple centers. For external validation, 516,805 tags and 27,938 tags were used from 2 different data sets.

RESULTS: Regarding structure identification, the area under the receiver operating characteristic curve (AUC) of each structure in the training data set, optimal performance in the test data set, and median AUC of each structure identification were 1 (95% CI: 1-1), 1 (95% CI: 1-1), and 1 (95% CI: 1-1), respectively. Regarding structure localization, the optimal average accuracy was 0.83. As for structure identification, the accuracy of the model significantly outperformed the median performance of the experts (P<0.01). The optimal identification accuracies of the model in 2 independent external data sets were 89.5% and 90%, respectively (P=0.626).

CONCLUSIONS: The model outperformed most human experts and was comparable to the optimal performance of all human experts in cardiac structure identification and localization, and could be used in the external data sets.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app