Add like
Add dislike
Add to saved papers

The SHH-GLI1 pathway is required in skin expansion and angiogenesis.

To investigate the role of GLI1 on skin proliferation and neovascularization during skin expansion in mice. We constructed GLI1-cre/R26-Tdtomato and GLI1-cre/R26-mtmg gene-tagged skin expansion mouse models. Using a two-photon in vivo imaging instrument to observe the changes in the number and distribution of GLI1(+) cells during the expansion process and to clarify the spatial relationship between GLI1(+) cells and blood vessels during the expansion process. In vitro proliferation assays were performed to further validate the effects of SHH (sonic hedgehog) and its downstream component GLI1 on cell proliferation viability. Finally, qRT-PCR was used to verify the changes in proliferation, angiogenesis-related factors, SHH signalling pathway-related factors, and the role of GLI1 cells in the process of skin expansion in mice. The number of GLI1(+) cells increased during dilation and were attached to the outer membrane of the vessel. The epidermis was thickened and the dermis thinned after the dilated skin was taken, while the epidermal thickening was suppressed and the dermis became thinner after the GLI1 cells were inhibited. The non-inhibited group showed a significant increase in PCNA positivity with prolonged dilation compared to the GANT61(GLI specificity inhibitor) inhibited group; CD31 immunofluorescence showed a significant increase in the number of dilated skin vessels and a significant decrease in the number of vessels after treatment with GANT61 inhibitor. In vitro proliferation results showed that SHH signalling activator significantly increased the proliferation viability of GLI1(+) hair follicle mesenchymal stem cells, while GNAT61 significantly inhibited the proliferation viability of GLI1(+) hair follicle mesenchymal stem cells. GLI1 is necessary for proliferation and neovascularization in expansion skin of mice through activation of the SHH signalling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app